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Abstract. In this paper, our main aim is to study periodic and potent

elements of a ring. We specially study periodic elements of graded rings

and generalize some classical results related to idempotent of polynomial

rings. We show that a (von Neumann) quasi-inverse of a potent element

is a root of unity. We study the isomorphism of potent elements and

analyze some closure properties of the set Pot(R) of potent elements of

a ring R. The potent elements of the endomorphism ring of a Fitting

module are described, and we apply this to matrices over division rings.

In the case of matrices over finite fields, we connect features of potent

elements with the exponent of their minimal polynomials.
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1. Introduction

Periodic rings were introduced by Chacron [4] in his study of Herstein’s

commutativity theorems [8]. Many works have been published around this

theme, let us mention for instance the references [2],[3],[4],[5],[11],[12],[9],

and [13]. Lifting idempotents is a classical topic while trying to lift the

structural properties of quotient rings. Recently lifting properties have been

studied for periodic elements in [11], [12]. Finite rings form an important

family of periodic rings. Applications have been given with a flavor of poly-

nomial arithmetic over finite fields ([3]). Periodic elements are fascinating

since they present different decompositions and connect with many other

types of elements such as the clean, nil clean, (von Neumann) regular, unit

regular. In this paper, we focus on periodic and potent elements. Potent,

idempotent, and nilpotent elements form important subclasses of periodic

elements and appear naturally.

Let us now briefly describe the content of the paper. We are trying, as far

as possible, to develop the theory assuming the properties on one element

without requiring all the elements of the ring to have this property. Another

∗Corresponding author.
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feature of the paper is that it is essentially self-contained. In Section 2, we

present, with short direct proofs, some characterizations and properties of

periodic elements in Propositions 2.4 and 2.5. We analyze periodic elements

in graded rings R =
⊕

i∈NRi. We first state a result for idempotents in such

rings and use it to get a property of periodic elements (cf. Theorem 2.12).

This ensures that, under some conditions, the periodic elements come from

the zero component R0. We also consider periodic elements of domains and

of polynomial rings.

The potent elements are studied in Section 3. We first show that, in

any ring, potent elements are unit regular and obtain various properties of

the unit regular decomposition. In particular, the quasi inverse of a potent

element is a root of unity. We obtain necessary and sufficient conditions for

two potents with the same level of potency to be isomorphic, generalizing

the classical result of idempotents. We then study the commutative closure

of potent elements. We analyze the potent elements in matrix rings over

fields. In the case of finite fields we connect the potent matrices with the

exponent of polynomials.

All the rings considered in this paper are assumed to have an identity

except in some explicitly mentioned cases. Ring homomorphisms respect

the identity. If R is a ring, we denote U(R), P er(R), Pot(R), and Nil(R)

the set of units, periodic, potent, and nilpotent elements of R. In addition,

J(R) stands for the Jacobson radical of R. The symbol N (respectively, N∗)

denotes the nonnegative integers (respectively, positive integers).

2. Periodic elements

In this section, we study periodic elements of general rings. We are par-

ticularly interested in the case of graded rings.

Definitions 2.1. An element a of a ring R is periodic if there exist integers

0 < m < l such that am = al. When m = 1, we say that the element is

potent. In this case, the smallest l > 1 such that al = a is called the level

of potency. A ring R is periodic (π-potent) if all its elements are periodic

(potent).

If R is a periodic ring, then the element 1R+1R is periodic and this easily

leads to the fact that there exists q ∈ N∗ such that qR = 0. For completeness,

we provide short proofs of a few well-known useful facts. Notice that we focus

on elements and don’t require the ring to be periodic.

Lemma 2.2. Let R be a ring, a, b ∈ R, f(x) ∈ Z[x] be a monic polynomial

of degree n, and q ∈ N∗. Then the following statements hold:
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(1) If f(a) = qa = 0, then a is periodic.

(2) If a, b are periodic, qa = qb = 0, and ba = f(a)b, then the subring

(without one) generated by a and b is periodic.

Proof. (1) We may assume that the constant term of f(x) is zero. It is easy

to check that the elements of the set {a, a2, a3, . . . , al, . . .} are of the form∑n−1
i=0 αia

i with, for 1 ≤ i ≤ n − 1, −q + 1 ≤ αi ≤ q − 1. Since there are

only a finite number of such expressions we conclude that the set of powers

of a is finite, and hence we can find distinct m,n ∈ N such that am = an, as

desired.

(2) Suppose that there exist distinct l,m ∈ N (l > m) and distinct s, t ∈
N (s > t) such that al = am and bs = bt. Since by the hypothesis ba = f(a)b,

this implies that the monomials in a and b are of the form aibj with 0 < i < l

and 0 < j < s. Since there exists an integer q > 0 such that qa = qb = 0, we

obtain that the subring (without identity) generated by a and b is a finite

ring, and hence is periodic. □

Let us mention a classical result due to Chacron (cf. [4]) that strengthens

(1) in Lemma 2.2.

Proposition 2.3. Let R be a ring such that for any element a ∈ R, there

exist m ∈ N and a polynomial f(x) ∈ Z[x] such that am = am+1f(a). Then

R is periodic.

Proposition 2.4. Let a be an element in a ring R. Then the following are

equivalent:

(1) There exist m, l ∈ N, l > m, such that am = al, i.e., a is periodic.

(2) There exist m, l ∈ N, l > m, such that for any k ∈ N and any j ≥ m

we have aj = aj+k(l−m).

(3) If al = am with l > m, then am(l−m) is an idempotent.

(4) There exists r ∈ N∗ such that arR⊕ a(1− ar)R = aR.

(5) There exists r ∈ N∗ such that Rar ⊕Ra(1− ar) = Ra.

(6) There exists r ∈ N∗ such that arR ∩ a(1− ar)R = {0}.
(7) There exists r ∈ N∗ such that Rar ∩Ra(1− ar) = {0}.

Proof. (1) ⇒ (2) We have am = amal−m = ama2(l−m) = · · · = am+k(l−m)

and hence also aj = aj+k(l−m) for any j ≥ m.

(2) ⇒ (3) Using (2), we get (am(l−m))2 = am(l−m)+m(l−m) = am(l−m).

(3) ⇒ (1) This is straightforward.

(3) ⇒ (4) Suppose that there exists r ≥ 1 such that ar is an idempotent.

This implies that arR ∩ a(1 − ar)R ⊆ arR ∩ (1 − ar)R = {0}, and clearly
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arR+ a(1− ar)R ⊆ aR. Now, if ab ∈ aR, then we can deduce that

ab = (ar + (1− ar))ab = (ar+1 + a(1− ar))b ∈ arR+ a(1− ar)R.

(4) ⇒ (6) This is straightforward.

(6) ⇒ (3) Due to ar−a2r = ar(1−ar) ∈ arR∩a(1−ar)R = {0}, we thus
get ar is an idempotent.

(3) ⇒ (5) and (5) ⇒ (7) and (7) ⇒ (3) are proved similarly. □

Although the fact that periodic elements are strongly clean seems to be

part of folklore, we present a short proof of this fact in Proposition 2.5 (4).

Notice also that the first three statements of this proposition are equivalent

if the ring R is periodic (cf. Corollary 2.6).

Proposition 2.5. For an element a ∈ R, consider the following assertions:

(1) a is periodic and al = am for some l,m ∈ N∗ with m < l.

(2) For any k ∈ N, we have a = p + n, where p = a1+k(l−m) is potent

and n = a(1− ak(l−m)) ∈ Nil(R) are such that pn = np.

(3) There exists a prime integer p such that a− ap is nilpotent.

(4) a is strongly clean, i.e., a = e+u, where e = e2 and u is a unit, and

eu = ue.

Then we have (1) ⇒ (2), (2) ⇒ (3), (2) ⇒ (4). Moreover, if we suppose

that there exists q ∈ N such that qa = 0, then the first three assertions are

equivalent.

Proof. (1) ⇒ (2) For any k ∈ N, we have a = p+n, where n = a(1−ak(l−m))

and p = a1+k(l−m). Thanks to (2) in Lemma 2.4, we have nm = 0. Moreover,

if k is such that k(l −m) + 1 ≥ m, then one obtains

p1+k(l−m) = a(1+k(l−m))2 = a1+k(l−m)+(1+k(l−m))k(l−m) = a1+k(l−m) = p.

The fact that pn = np is straightforward.

(2) ⇒ (3) By (2) in Lemma 2.4 and the proof of (1) ⇒ (2), we know that,

for any k ≥ m, we get a − a1+k(l−m) is nilpotent. Since 1 and l − m are

coprime, the Dirichlet’s result yields the proof.

(2) ⇒ (4) By (2), we know that a = p + n, where p is potent and n is

nilpotent, pn = np, and pa = ap. We will show that p is strongly clean.

Suppose pl = p. We then obtain 1− pl−1 is idempotent and we easily check

that, for i ≥ 1, we have (−1+p+pl−1)pi = pi+1. This leads to the fact that

(−1 + p+ pl−1)(−1 + pl−2 + pl−1) = 1. We can thus write p = e+ u, where

e = 1−pl−1 is an idempotent element and u = −1+p+pl−1 is an invertible

element. Notice that pu = up. Now, our periodic element a can be written
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as a = p+ n = e+ u+ n = e+ u(1+ u−1n). Since un = nu, we deduce that

1 + u−1n is invertible. This yields the proof.

To prove that the first three assertions are equivalent if there exists some

q ∈ N∗ such that qa = 0, it is enough to show that under this hypothesis

(3) ⇒ (1). But remember that a− ap ∈ Nil(R), we get a monic polynomial

f(x) ∈ Z[x] such that f(a) = 0. Due to qa = 0, Lemma 2.2 (1), yields the

conclusion. □

The comments just after definition 2.1 and the above proposition imme-

diately leads to the following classical result.

Corollary 2.6. If R is a periodic ring, then, for any element a ∈ R, the

first three statements in Proposition 2.5 are equivalent.

Remarks 2.7. (1) From Proposition 2.5 we see that π-potent rings are

periodic and reduced.

(2) Proposition 2.5 (2) above shows that strongly nil clean rings are pe-

riodic.

Let us make some comments on periodic rings. First, let us recall that a

periodic ring is Dedekind-finite [3]. More information about these rings can

be found in [6]

Proposition 2.8. (1) If a domain A is periodic, then it is a subfield

of the algebraic closure of a finite field Fp, for some prime integer

p > 0.

(2) Let I be the nil ideal of a ring R. Then R is periodic if and only if

R/I is periodic. In particular, this is true for the prime radical of

R.

Proof. (1) Let R be a periodic domain. Then the nonzero elements of R are

potent and invertible. This gives that R is a commutative field. Moreover,

we know that a periodic ring has a nonzero characteristic. Since R is a

field, the characteristic is a prime positive integer, say p > 0. Moreover, R

is algebraic over its prime field, and hence R is a subfield of the algebraic

closure of Fp.

(2) This is an immediate consequence of the fact that, if for every a ∈ R,

there exist m, l, n ∈ N such that (am − al)n = 0; then the ring R is periodic

by using Proposition 2.3. □

We remark that while considering potent rings, (2) implies that we can

assume the ring R to be semiprime.
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Definition 2.9. A ring R is an N-graded ring if R =
⊕

i∈NRi, where Ri

are additive subgroups of (R,+) and, for i, j ∈ N, RiRj ⊆ Ri+j.

We continue to focus on periodic elements. The next theorem was proved

in [3] when the base ring R0 was assumed to be periodic. The same proof

works for elements and we reproduce it here for the sake of completeness.

Theorem 2.10. Let R =
⊕

i∈NRi be a graded ring and let f =
∑m

i=0 ai ∈ R,

ai ∈ Ri for i ∈ {0, . . . ,m}, and fn =
nm∑
k=0

An
k , where An

k is the homogeneous

component of fn of degree k. Then, if a0 is periodic and such that qa0 = 0

for some q ∈ N, then for all k ∈ N, there exist l, s ∈ N with l > s and

Al
k = As

k. In particular, this holds if R0 is a periodic ring.

Proof. Let f =
∑m

i=0 ai ∈ R. Suppose that a0 is periodic so that there

exist positive integers e, p with p < e and ae0 = ap0. Let k ∈ N be fixed

and notice that An
k is the sum of all words in a0, a1, . . . , am of length n and

degree k. Any word in a0, a1, . . . , am of length n and degree k is of the form

aj10 ac1a
j2
0 ac2 · · · acya

jy+1

0 , with 0 ≤ jl ≤ e and
∑y

b=1 cb = k. If n > k in any

such word the letter a0 will appear. The number, say h, of such words is

finite and is independent of n > k when n is big enough. If w1, . . . , wh are all

the words in a0, a1, . . . , am of length n and degree k with n > k, then for all

n ∈ N, An
k = α1w1+ · · ·+αhwh, αi ∈ N. The fact that the letter a0 appears

in the words w1, . . . , wh and our assumption shows that 0 ≤ αi ≤ q − 1.

Therefore, for k fixed, the set {An
k | n ∈ N} is finite and hence, for all k ∈ N,

there exist l, s ∈ N, l > s such that Al
k = As

k, as desired. □

The next theorem generalizes to periodic elements a result that is well-

known for idempotents of a polynomial ring. We first re-prove the case of

idempotent elements in a graded ring.

Lemma 2.11. Let R =
⊕

i∈NRi be a graded ring and e =
∑n

i=0 ei ∈ R be

an idempotent. If eie0 = e0ei, for every i ≥ 0, then e = e0. In particular, if

R0 is abelian, then E(R) = E(R0).

Proof. It is clear that e0 is an idempotent of R. Assume that e ̸= e0 and

let k > 0 be the least index such that ek ̸= 0. Comparing the degree k

coefficients of e2 and e, we get 2eke0 = ek. Multiplying this equality by

e0 on the right, we obtain eke0 = e0ek = 0, and hence also ek = 0. This

contradiction yields the result. □

The following theorem generalizes Lemma 2.11.
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Theorem 2.12. Let R =
⊕

i∈NRi be a graded ring and p =
∑n

i=0 pi be a

periodic element such that [p0, pi] = 0. If pl = pm, for some l > m, we

put r = m(l − m) and assume that r1R is a nonzero divisor in R. Then

pm
2
= pm

2

0 ∈ R0. In particular, under these conditions, if p is potent, then

m = 1 and p ∈ R0.

Proof. Let us assume that p =
∑n

i=0 pi, with pi ∈ Ri, is such that pl = pm,

where l > m. We put r := m(l−m); hence, Proposition 2.4(3) implies that

pr is idempotent. Now, Lemma 2.11 shows that pr ∈ R0, and hence pr = pr0.

We also have

pm
2
= (pm)m = (pl)m = plm = pm

2+m(l−m) = pm
2
pr = pm

2
pr0.

We write pm
2
=
∑t

i=0 qi, qi ∈ Ri, and obtain

t∑
i=0

qi = pm
2
= pm

2
pr0 = (

t∑
i=0

qi)p
r
0.

This gives that, for any 0 ≤ i ≤ t, qi = pr0qi, and thus qi = psr0 qi for any

s ∈ N. Since pr = pr0, the sum of degree i ≥ 1 terms of pr is zero. We

now prove, by induction on i, that for any i ≥ 1, we have p
i(r−1)
0 pi = 0. If

i = 1, then the degree 1 term of pr gives rpr−1
0 p1 = 0. The fact that r1R is

not a zero divisor gives pr−1
0 p1 = 0. The induction hypothesis shows that

p
(i−1)(r−1)
0 annihilates all the elements of p1, . . . , pi−1. The fact that the sum

of the degree i terms of pr is zero leads to rpr−1
0 pi + w = 0, where w is a

sum of words that contain at least one pj with j < i. Multiplying this last

equality by p
(i−1)(r−1)
0 leads to rp

i(r−1)
0 pi = 0. Our hypothesis says that r1R

is not a zero divisor leads to the claim.

We get pm
2
=
∑t

i=0 qi, so qi ∈ Ri is a sum of products of pj for j ≤ i.

Therefore, pir0 qi = 0. But we know that qi = pir0 qi. This implies that, for

i ≥ 1, we have qi = 0. We thus conclude that pm
2 ∈ R0, as required. □

Remark 2.13. The proof of Theorem 2.12 shows that we only require the

graded ring R to be such that, for any a ∈ S, where S is the set of monomials

in the pi’s, we have ra = m(l −m)a = 0 implies that a = 0.

The following result should be compared with (2) and (3) in Proposition

2.5.

Proposition 2.14. Let R =
⊕

i∈NRi be a graded ring and p =
∑n

i=0 pi ∈
Per(R) be such that pip0 = p0pi for 1 ≤ i ≤ n. Suppose there exists a

natural number q such that qpi = 0 for 0 ≤ i ≤ n. Then p− p0 is nilpotent.
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Proof. On account of p and p0 are periodic and commute and qp = qp0 = 0,

we know, by Lemma 2.2(2), that p − p0 is also periodic. This yields that

p − p0 := p1 + p2 + p3 + · · · + ps is such that p − p0 is periodic. So there

exist l,m ∈ N such that (p − p0)
l = (p − p0)

m with l > m. This gives that

(p − p0)
m(1 − (p − p0)

l−m) = 0. If (p − p0)
l−m = 0, then we are done. If

(p − p0)
l−m ̸= 0, then 1 − (p − p0)

l−m is not a zero divisor, since its zero

component is 1. We thus deduce that (p− p0)
m = 0, as desired. □

As a direct application of the last results, let us mention the following

corollary. We recall that if σ is an automorphism of a ring R0, then the skew

polynomial ring R0[x;σ] is the set of polynomials
∑n

i=0 aix
i with coefficients

ai ∈ R0 written on the left. This set is a ring with usual addition and

multiplication based on the commutation rule xa = σ(a)x, for a ∈ R0. This

ring is graded by the degree.

Corollary 2.15. Let R0 be a ring and σ an automorphism of R0. If e(x) =∑
eix

i ∈ R = R0[x;σ] is an idempotent and p = p(x) =
∑

pix
i ∈ R is a

periodic element, then

(1) If eie0 = e0ei, then e(x) = e0 ∈ R0.

(2) If pl = pm is such that [pi, p0] = 0 and m(l − m)1R is not a zero

divisor, then we have pm
2 ∈ R0.

Examples 2.16. (1) The polynomial p(x) = 4x+1 ∈ (Z/8Z)[x] is such
that p(x)3 = p(x). So, in this case we have l = 3, m = 1, and r = 2.

This shows that the condition mentioned in Theorem 2.12 (or in

Remark 2.13(1)) is not satisfied.

(2) Consider the ring M3(k)[x], where k is a field. Let p(x) = p0 + p1x

be such that

p0 =

0 1 0

0 0 1

1 0 0

 and p1 =

0 0 0

1 0 0

0 −1 0

 .

One can check that p(x)3 = 1, and hence p(x) is potent but we

remark that p0p1 ̸= p1p0, so that we cannot apply Theorem 2.12.

Corollary 2.17. (1) If a =
∑

ai ∈ R =
⊕

i∈NRi is such that al = a (a is

a potent element) with [a0, ai] = 0 and (l − 1)1R is not a zero divisor, then

a = a0.

(2) Let R be 2-primal and let T be a set of central indeterminates. Then

S := R[T ] is 2-primal and if a ∈ Per(S) then a = a0+a1 where a0 ∈ Per(R)

and a1 ∈ Nil(R)[T ]\R. Thus, in this case, we have Per(R[T ]) ⊆ Per(R)+

(Nil(R)[T ] \R).
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Proof. (1) is a direct consequence of our earlier results and is left to the

reader.

(2) To prove that S is 2-primal it is enough to show that Nil(S) ⊆ P (S),

where P (S) is the prime radical of S. It is well-known that P (S) = P (R)[T ]

(cf. [13], P. 160). So that S/P (S) = S
P (R)[T ] =

R
P (R) [T ]. Since R is 2-primal,

we get that R/P (R) is reduced and hence S/P (S) is also reduced. This

implies that S itself is 2-primal.

Let P be a minimal prime ideal of R. Then P is a completely prime ideal

of R, so R/P is a domain. If f ∈ R[T ], then f ∈ R[T0] where T0 = t1, . . . , tn
is a finite subset of T . We thus write f =

∑
i∈I ait

i, where I ⊆ Nn, ai ∈ R,

and for i = (i1, . . . , in) ∈ I, ti = ti11 t
i2
2 . . . tinn . For any f ∈ Per(R[T ]),

there exist distinct m,n ∈ N such that f
m

= f
n ∈ R[T ]/P [T ] (m > n).

Comparing the degree zero coefficients of fn and fm, we get a0 is periodic.

Now, to end the proof, it is enough to show that for each minimal prime

ideal P of R, every ai ∈ P (i ̸= 0). Also, R[T ]/P [T ] ∼= R
P [T ]. Then

f ∈ Per(RP [T ]). Since R
P [T ] is a domain, we have f = 0̄ or f

m−n
= 1̄. If

f = 0̄, then f ∈ P [T ]. If f
n−m

= 1̄, then f ∈ R
P [T ] is invertible. Since R/P

is a domain, this implies that āi = 0̄ for i ̸= 0, and hence ai ∈ P , i ̸= 0. In

both cases, we get ai ∈ P for i ̸= 0. Because for every minimal primal ideal

P we get ai ∈ P for i ̸= 0, we obtain ai ∈
⋂
P = Nil(R) for i ̸= 0. We

conclude that Per(R[T ]) ⊆ Per(R) + (Nil(R)[T ] \R). □

Example 2.18. Let R be the commutative ring Z[y]/(y2). Consider 1+yx ∈
R[x]. Clearly, 1 is periodic and y is nilpotent, but (1 + yx)n = 1 + nyx is

not periodic for any n ∈ N. This shows the reverse inclusion in Corollary

2.17(2) does not always hold.

3. Potent elements

This section starts with some properties of potent elements in general

rings. We first connect these elements with the von Neumann elements. It

is well-known and obvious that idempotents are (von Neumann) unit regular.

Theorem 3.2 shows that the same is true for potent elements.

Lemma 3.1. A potent element is always von Neumann regular. A π-potent

ring is a commutative von Neumann regular ring. In particular, it is unit

regular.

Proof. Let a = al be a potent element of R. If l = 2, then a is an idempotent,

and hence unit regular. If l > 2, then we have a = al = aal−2a so that a
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is regular. If R is a π-potent ring, then it is a commutative von Neumann

regular ring. Such a ring is always unit regular (cf. [7, Corollary 4.2]). □

Since a strongly regular element is unit regular ([7]), we conclude that a

potent element is unit regular. The next theorem gives a direct proof of this

fact and moreover shows that a quasi inverse of a potent element is a root

of unity.

Theorem 3.2. Every potent element is unit regular and has a root of unity

as quasi inverse.

Proof. Let x ∈ Pot(R), say xl = x with l ≥ 2. If l = 2, x is an idempotent

and the result is clear. So we may assume that l ≥ 3. We want to prove

that there exists y ∈ U(R) such that x = xyx. We get x = xxl−2x and

x(1− xl−1) = 0. This gives x(1− xl−1 + xl−2)x = xl = x.

Since (1 − xl−1)xl−2 = 0 and 1 − xl−1 is an idempotent, we get that

(1− xl−1 + xl−2)l−1 = 1− xl−1 + (xl−2)l−1 = 1

□

We now collect some features of a potent element in the following corol-

lary.

Corollary 3.3. Let al = a ∈ Pot(R) with l being the level of potency of a.

We put u = −1 + a + al−1, e = 1 − al−1, v = 1 + al−2 − al−1. Then the

following statements hold:

(1) The element al−1 is an idempotent, u ∈ U(R), and a = e + u, with

eu = ue.

(2) The element a is unit regular, more precisely, a = ava, where v ∈
U(R) is such that vl−1 = 1 and l is the level of potency of v.

(3) We have av = f = f2, f = al−1 = 1− e, u = −1+ a+ al−1 = a− e,

and v = al−2 + a− u.

Proof. (1) This can be extracted from the proof of Proposition 2.5(4).

(2) The fact that a = ava, where v = 1 + al−2 − al−1 = al−2 + e ∈ U(R)

comes from the proof of Theorem 3.2. This proof also shows that vl−1 = 1,

and hence vl = v. Let us now show that the level of potency of v is l.

Assume that vs = v, with 1 < s < l. Following the proof of Theorem 3.2,

we get v = vs = (1+al−2−al−1)s = 1+al−s−1−al−1 = v = 1+al−2−al−1.

This leads to al−s−1 = al−2. So, a = al = al−s+1. Since 1 < l − s + 1 < l,

this contradicts the fact that l is the level of potency of a. This shows that

l is also the level of potency of v.

(3) This is straightforward and left to the reader. □
10



Remark 3.4. If a ∈ R is periodic, say al = am with l > m, we put

r = m(l − m). Following the proof of Proposition 2.5 we can express the

summands of these decompositions in terms of a. In fact, we have a =

p + n = e + u, where p = ar+1 is potent, n = a − ar+1 is nilpotent, and

e = 1 − pr u = −1 + p + pr. In addition, the proof of Theorem 3.2 gives

that p = pvp, where v = 1+ ar−1 − ar is invertible (with inverse vr−1). The

element f = pv is then idempotent and we get f2 = f = ar.

Lemma 3.5. Let a, b be elements in a ring R. Then, the following state-

ments hold:

(1) If ab ∈ Pot(R), then (ba)s ∈ Pot(R) for any s ≥ 2.

(2) If ab ∈ Pot(R) and ab ∈ U(R), then ba ∈ Pot(R).

Proof. (1) Let (ab)l = ab. Then direct computations give that

(ba)sl = b(ab)(s−1)l+l−1a = b((ab)l)s−1(ab)l−1a = b(ab)s−1(ab)l−1a

= b(ab)s+l−2a = b(ab)s−2(ab)la = b(ab)s−2(ab)a

= b(ab)s−1a = (ba)s.

This shows that (ba)s is a potent element, as required.

(2) If (ab)l = ab and ab ∈ U(R), then (ab)l−1 = 1, this gives that (ba)l =

b(ab)l−1a = ba. So that ba is potent. □

The next proposition gives more information about the relations between

ab and (ba)2 when ab is potent. Let us notice that if ab ∈ Pot(R), then by

Proposition 3.5 (1), we have (ba)2 ∈ Pot(R) and these elements are strongly

clean. We can thus write ab = e + u and (ba)2 = f + v, where e, f are

idempotents and u, v are units such that eu = ue and fv = vf .

Proposition 3.6. With the above notations we have the following:

(1) afb = 0.

(2) baf = bea.

(3) b(af − ea) = (af − ea)b = 0.

(4) b(u+ e)a = f + v and a(f + v)b = avb.

Proof. (1) According to Corollary 3.3 we have f = 1− (ba)2(l−1), and hence

afb = a(1− (ba)2(l−1))b = ab− (ab)2(l−1)+1

= ab− (ab)l(ab)l−1 = ab(1− (ab)l−1) = 0.

11



(2) We have the following equalities

baf = ba(1− (ba)2(l−1)) = ba− b(ab)2(l−1)a = ba− b(ab)l−1a

= ba− (ba)l = b(1− (ab)l−1)a = bea.

(3) The first equality is clear from (2), and the second one is a direct

consequence of the fact that e = 1− (ab)l−1.

(4) Note that f + v = (ba)2 = b(ab)a = b(e + u)a. Also, Corollary 3.3

implies that v = −1+(ba)2+(ba)2(l−1). This leads to the following equalities

avb = a(−1 + (ba)2 + (ba)2(l−1))b = −ab+ (ab)3 + (ab)2(l−1)+1

= (ab)3 = a(ba)2b = a(f + v)b.

This finishes the proof. □

It is worth considering the relationship between periodic and regular el-

ements. We say an element a ∈ R is strongly regular if there exists x ∈ R

such that a = axa, where ax = xa. We denote the set of strongly regular

elements as sReg(R). Theorem 3.2 and its proof show that potent elements

are strongly regular. We have the following proposition.

Proposition 3.7. Let R be any ring. We have:

Per(R) ∩ sReg(R) = Pot(R).

Proof. It is enough to show that Per(R) ∩ sReg(R) ⊆ Pot(R). To do this,

let a ∈ Per(R)∩ sReg(R). There exist l,m ∈ N and x ∈ R such that l > m,

a = a2x, ax = xa, and al = am. We suppose that l is minimal. Assume

that a /∈ Pot(R). We thus have m ≥ 2. This gives rise to

al−1 = alx = amx = am−2a2x = am−1.

This is a contradiction with the minimality of l. □

Example 3.8. Proposition 3.7 is untrue if we just consider the intersection

of Per(R) with Reg(R), the set of regular elements. To see this, consider

the ring R = M2(F2). This finite ring is periodic and regular but not all

elements of R are potent.

The following proposition generalizes the classical criterion for isomorphic

idempotents (cf. [14], section 21).

Proposition 3.9. Suppose c, d ∈ R and n ≥ 2 are such that cn = c and

dn = d. Then

cR ∼= dR ⇔ ∃ a, b ∈ R such that c = bdn−2a and d = acn−2b.
12



Proof. Suppose that θ : cR → dR is an R-module isomorphism and let

a = dα ∈ dR be such that θ(c) = a. We thus have a = θ(c) = θ(cn) =

θ(c)cn−1 = acn−1. By a similar argument, if b = cβ ∈ cR is such that

θ−1(d) = b, we obtain b = θ−1(d)dn−1 = bdn−1. We then get

c = θ−1(θ(c)) = θ−1(a) = θ−1(d)α = bdn−1α = bdn−2a.

We can deduce d = acn−2b in the same way.

Conversely, suppose cn = c ∈ R and dn = d ∈ R are such that c = bdn−2a

and d = acn−2b. We thus have the following

acn−1 = acn−2c = acn−2bdn−2a = ddn−2a = dn−1a ∈ dR.

Similarly, we obtain bdn−1 = cn−1b ∈ cR. We then define θ : cR → dR

via θ(c) = acn−1 and θ′ : dR → cR via θ′(d) = bdn−1. These maps are

well-defined and we compute, for every x ∈ R,

θ′(θ(cx)) = θ′(acn−1x) = θ′(dn−1ax) = θ′(d)dn−2ax

= bdn−1dn−2ax = bdn−2ax = cx.

Similarly, we have θ(θ′(dx)) = dx for every x ∈ R. This shows that θ is an

isomorphism of right R-modules with θ′ = θ−1. □

The symmetry of Proposition 3.9 gives immediately the following corol-

lary.

Corollary 3.10. Suppose c, d ∈ R and n ≥ 2 are such that cn = c and

dn = d. Then cR ≃ dR if and only if Rc ≃ Rd.

Remark 3.11. Let us mention that, for a potent element c ∈ R, say cn = c,

for n > 1, we have that cR = cn−1R where cn−1 is an idempotent. Hence,

if d ∈ R is another potent element such that dn = d then cR ≃ dR if

and only if cn−1R ≃ dn−1R. So we could also use the characterization of

the isomorphic idempotents cn−1 and dn−1 to get a characterization of the

isomorphic potent elements c and d, but this would have involved powers of

c and d.

Let us mention, without proof, the following lemma. For more information

on direct limit we refer the reader to [18].

Lemma 3.12. Let R1, R2 and Ri i ∈ I be rings. Then the following state-

ments hold:

(1) Pot(R1 ×R2) = Pot(R1)× Pot(R2).

(2) If (I,≤) is a directed set and (Ri)i∈I is a directed system of rings,

then Pot(Ri) is a directed system of sets and lim−→Pot(Ri) = Pot(lim−→Ri).
13



It is easy to remark that Pot(R) ∩Nil(R) = {0}. We will provide some

more remarks related to Pot(R) in the next theorem. To do this, we need

the following definition (cf. [1]).

Definitions 3.13. A subset S of a ring is called commutatively closed if for

any a, b ∈ R, we have ab ∈ S implies ba ∈ S. If a, b ∈ R, we write a ∼
1
b if

there exists c, d ∈ R such that a = cd and b = dc, and we define by induction

a ∼
n
b iff there exists c ∈ R such that a ∼

1
c and c ∼

n−1
b. If S is a subset of

R, we define

S = {x ∈ R | ∃ n ∈ N, ∃ s ∈ S with x ∼
n
s}.

This definition is motivated by the fact that it leads to a characterization

of Dedekind-finite rings, reversible rings, and is related to regular elements,

clean elements, Jacobson Lemma, and many other classical topics (cf. [1]

and [15], for more information).

Theorem 3.14. Let R be a ring. Then the following statements hold:

(1) Per(R) is commutatively closed (i.e., ab ∈ Per(R) if and only if

ba ∈ Per(R)).

(2) Pot(R) ⊆ Per(R).

(3) If x ∈ Pot(R), then there exists l ∈ N such that xl ∈ Pot(R).

(4) Pot(R) ∩Nil(R) = {0}
(5) Pot(R) ∩ Jac(R) ⊆ {0}

Proof. (1) This is straightforward and left to the reader.

(2) Due to Pot(R) ⊆ Per(R), we get Pot(R) ⊆ Per(R) = Per(R).

(3) If x ∈ Pot(R), then x is periodic, and so a power of x is idempotent

by Proposition 2.4.

(4) If x ∈ Pot(R) ∩Nil(R), then there exist n ∈ N and y ∈ Pot(R) such

that x ∼
n
y and, since x ∈ Nil(R), y ∈ Nil(R), as well. This means that y is

potent and nilpotent, so that y = 0 and the fact that x ∼
n
y implies x ∈ {0}.

Conversely, let a ∈ {0}. Thanks to {0} ⊂ Nil(R), we obtain a ∈ Nil(R).

On the other hand, since 0 ∈ Pot(R), we have 0 ⊆ Pot(R), and therefore

a ∈ Nil(R) ∩ Pot(R), as desired.

(5) If x ∈ Pot(R) ∩ Jac(R), we have that there exists r ∈ N such that

xr is an idempotent and belongs to J(R). This implies that xr = 0 and

hence the statement (4) above shows that x ∈ Pot(R) ∩ Nil(R) = {0}, as
required. □

14



Let us notice that the commutative closure gives rise to a topology on

a ring. In particular, the intersection of two closed subsets is closed. This

immediately gives the inclusion {0} ⊆ Nil(R)∩Pot(R) in Theorem 3.14(4).

Recall that a ring is reversible if for a, b ∈ R, ab = 0 implies ba = 0.

Corollary 3.15. A ring R is reversible if and only if Pot(R)∩Nil(R) = {0}.

Proof. The definitions imply that R is reversible if and only if {0} = {0}.
Theorem 3.14(4) yields the conclusion. □

Example 3.16. We give an example such that the set of potent elements

is not commutatively closed. Let F be a field and

a =

(
0 1

0 1

)
∈ M2(F) and b =

(
1 0

0 0

)
∈ M2(F).

Then ab = 0 is potent but 0 ̸= ba is nilpotent, and hence not potent.

Before stating the next proposition let us make the following remark.

Remark 3.17. A word of caution about definitions is in order. A ring R is

said to be potent if each left ideal of R that is not contained in the Jacob-

son radical contains a nonzero idempotent and idempotents lift modulo the

Jacobson radical. This definition is left-right symmetric and was introduced

by Nicholson [16]. In some literature (cf., e.g. [17]) the π-potent rings are

called potent rings. We will continue to use the classical definition of potent

rings given by Nicholson. Nicholson proved that every exchange ring is a

potent ring (cf. [16]). We have the following result relating π-potent rings

and potent rings.

Proposition 3.18. A π-potent ring is a potent ring.

Proof. If R is a π-potent ring, then according to [17] every nonzero subring

of R not contained in the Jacobson radical contains an idempotent element.

Since a left ideal of R is a subring, the definition of a potent ring immediately

gives that R is potent. The Jacobson radical of a potent ring being zero we

thus get the result. □

Proposition 3.19. If the zero divisors of a ring are nilpotent, then the

potent elements are roots of unity. This is the case of right Artinian local

rings.

Proof. If R is a ring satisfying our hypothesis and a ∈ R is a nonzero potent

element, say al = a, for l ∈ N, l > 1, we can deduce that a(1 − al−1) = 0.

Our hypothesis then shows that either a is nilpotent or 1 − al−1 = 0. On
15



account of a is potent and nonzero, it cannot be nilpotent. This finishes the

proof. □

The ring Z/pnZ, where p is a prime number, is a concrete example for

Proposition 3.19.

We recall that a module MR over a ring R is said to be a Fitting module

if for every α ∈ EndR(M) there exists s ∈ N such that

M = Ker(αs)⊕ Im(αs)

We now study potent elements in the endomorphism ring of a Fitting mod-

ule. As a corollary this will give a concrete decomposition of matrices over

division rings.

Theorem 3.20. Let MR be a Fitting module, α ∈ EndR(M) and s ∈ N be

such that M = Ker(αs)⊕Im(αs). Then α is potent if and only if αl|M1 = id.

and α|M0 = 0, where M0 = Ker(αs) and M1 = Im(αs).

Proof. Suppose that αm = α, for some m ∈ N. We decompose α = α0 + α1

where α0, α1 ∈ EndR(M) are such that α0|M0 = α|M0 , α0|M1 = 0 and

α1|M1 = α|M1 , α1|M0 = 0. M0 and M1 are stable under the action of α.

Moreover αs
0 = 0, α0α1 = α1α0 = 0 and α1 is an injection on M1. Moreover

we have α = αm = (α0 + α1)
m = αm

0 + αm
1 = α = α0 + α1 and hence

αm
0 = α0 and αm

1 = α1. Since α0 is nilpotent we get α0 = 0 and α = α1

with αm
1 = α1 and the fact α1 is an injection on M1 yields the result with

l = m− 1.

For the converse notice that, with the above notation, α = α1 and hence

αl+1 = α. □

In the rest of this section, we will briefly study potent matrices. Recall

that if a matrix with coefficients in a division ring D is idempotent, then

there exists a matrix P ∈ GLn(D) such that PAP−1 = diag(1, . . . , 1, 0, . . . , 0).

As a corollary of Theorem 3.20, we obtain the following generalization of this

fact for potent matrices.

Corollary 3.21. Suppose that D is a division ring and A ∈ R = Mn(D)

is such that Al = A. Then there exists P ∈ GLn(D) such that PAP−1 =

diag(A1, 0), where Al−1
1 = I, A1 ∈ GLr(D), and r = rank(A).

Proof. Since Dn
D is a Fitting module, we apply Theorem 3.20 and obtain

that there exists P ∈ GLn(D) such that PAP−1 = diag(A1, A0), where

A1 ∈ GLr(D) and A0 is nilpotent. The fact that Al = A implies that

Al
1 = A1 and Al

0 = A0. Since A0 is potent and nilpotent, we obtain that

A0 = 0. □
16



An invertible element a ∈ R is potent if and only if a is a root of unity.

In the next propositions we focus on noninvertible potent matrices.

Corollary 3.22. Let A ∈ M2(D) be a noninvertible matrix over a commu-

tative integral domain D. Then A is potent if and only if det(A) = 0 and

tr(A) is a root of unity in D.

Proof. Let F be the quotient field of D and consider A ∈ M2(D) ⊆ M2(F ).

Theorem 3.21 shows that A is similar to a matrix

(
a1 0

0 0

)
. Moreover the

element a1 is a root of unity and we have that Tr(A) = a1. This shows that

the condition is necessary. The converse is left to the reader. □

An easy example of a potent matrix is a diagonal matrix with potent

elements on the diagonal. We now give another more subtle construction of

potent matrices.

Example 3.23. (1) Let R be a ring. To construct A ∈ Mn(R) such that

Al = A, we consider l row vectors {u1, u2, . . . , ul} ⊆ M1×n(R) and l column

vectors {v1, v2, . . . , vl} ⊆ Mn×1(R) such that, there exists k ∈ N with, for

every 1 ≤ i, j ≤ l, the products uivj = 0 if i ̸= j and (uivi)
k = 1 ∈ R. Then

the matrices

A =
(
v1, . . . , vl

)u1
...

ul

 ∈ Mn×n(R) and B =

u1
...

ul

(v1, . . . , vl) ∈ Ml×l(R),

are such that Bk = Il×l and Ak+1 = A. Let us give particular concrete

instances of this construction. Let R be the set of real numbers, and suppose

u1, . . . , ul form a part of an orthogonal basis of Rn. Taking vi = ui
t (the

transpose of ui), one obtains uivj = δij , and hence A2 = A ∈ Mn×n(R). As
a very special case if x, y, z, t ∈ R are such that (xy + zt)k = 1, for some

k ∈ N, then the matrix A =

(
y

t

)(
x z

)
∈ M2×2(R) is such that Ak+1 = A.

The notion of exponent of polynomials with coefficients in a finite field is

classical. The following lemma is a well-known result.

Lemma 3.24. Let p(X) ∈ Fq[X] be such that p(0) ̸= 0, then there exists

e ∈ N such that p(X) divides Xe − 1.

Proof. Since the elementX of the finite ring Fq[X]/p(X) is not a zero divisor,

it must be a potent element. This finishes the proof. □
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With the notations of the above lemma, the minimal e such that p(X)

divides Xe − 1 is called the exponent or the period of p(X) and will be

denoted by Exp(p(X)). There are generalizations of this result, in particular

for polynomials over periodic rings, we refer to [3] for more details. Let us

recall that if p(X) ∈ Fq[X] is such that p(X) divides X l−1, then Exp(p(X))

divides l.

We remark that if p(X) ∈ Fq[X] has a nonzero independent coefficient,

then any matrix (of any size) annihilating this polynomial will be invertible

and potent. Now, in the next lemma, we look at noninvertible matrices in

Mn(Fq).

Lemma 3.25. Let A ∈ Mn(Fq) be a noninvertible matrix such that Al = Am

with m minimal. Then m is the highest power of X dividing the minimal

polynomial µA(X) of A.

Proof. Since A is not invertible, its minimal polynomial is of the form

µA(X) = p(X)Xs, where p(0) ̸= 0 and s ≥ 1. It follows from Lemma

3.24 that there exists e ∈ N such that p(X) divides Xe − 1. Hence, µA(X)

divides (Xe − 1)Xs, and therefore Ae+s − As = 0. The minimality of m

shows that m ≤ s. On the other hand, since Al − Am = 0, we can deduce

that the polynomial µA(X) = p(X)Xs divides (X l−m − 1)Xm, and thus

s ≤ m. This concludes the proof. □

We close this paper with the following proposition.

Proposition 3.26. Let 0 ̸= A ∈ Mn(Fq) be a noninvertible matrix. Then

Al = Am for some l ∈ N with l > m if and only if Xm is the highest power

of X dividing µA(X) and Exp(µA(X)
Xm ) divides l −m.

Proof. Assume that Al = Am. Then µA(X)|X l −Xm and µA(X)
Xm |X l−m − 1.

This gives that Exp(µA(X)
Xm )|l −m.

Conversely, if Xm is the highest power of X dividing µA(X), then we

can deduce that Exp(µA(X)
Xm ) exists and, by our hypothesis, it follows that

Exp(µA(X)
Xm )|l−m. This gives µA(X)

Xm |X l−m − 1, and hence µA(X)|X l −Xm.

Consequently, Al −Am = 0, as desired. □
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