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ABSTRACT. In this paper, our main aim is to study periodic and potent
elements of a ring. We specially study periodic elements of graded rings
and generalize some classical results related to idempotent of polynomial
rings. We show that a (von Neumann) quasi-inverse of a potent element
is a root of unity. We study the isomorphism of potent elements and
analyze some closure properties of the set Pot(R) of potent elements of
a ring R. The potent elements of the endomorphism ring of a Fitting
module are described, and we apply this to matrices over division rings.
In the case of matrices over finite fields, we connect features of potent
elements with the exponent of their minimal polynomials.
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1. INTRODUCTION

Periodic rings were introduced by Chacron [4] in his study of Herstein’s
commutativity theorems [8]. Many works have been published around this
theme, let us mention for instance the references [2],[3],[4],[5],[11],[12],[9],
and [13]. Lifting idempotents is a classical topic while trying to lift the
structural properties of quotient rings. Recently lifting properties have been
studied for periodic elements in [11], [12]. Finite rings form an important
family of periodic rings. Applications have been given with a flavor of poly-
nomial arithmetic over finite fields ([3]). Periodic elements are fascinating
since they present different decompositions and connect with many other
types of elements such as the clean, nil clean, (von Neumann) regular, unit
regular. In this paper, we focus on periodic and potent elements. Potent,
idempotent, and nilpotent elements form important subclasses of periodic
elements and appear naturally.

Let us now briefly describe the content of the paper. We are trying, as far
as possible, to develop the theory assuming the properties on one element
without requiring all the elements of the ring to have this property. Another
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feature of the paper is that it is essentially self-contained. In Section 2, we
present, with short direct proofs, some characterizations and properties of
periodic elements in Propositions 2.4 and 2.5. We analyze periodic elements
in graded rings R = @,y Ri. We first state a result for idempotents in such
rings and use it to get a property of periodic elements (cf. Theorem 2.12).
This ensures that, under some conditions, the periodic elements come from
the zero component Ry. We also consider periodic elements of domains and
of polynomial rings.

The potent elements are studied in Section 3. We first show that, in
any ring, potent elements are unit regular and obtain various properties of
the unit regular decomposition. In particular, the quasi inverse of a potent
element is a root of unity. We obtain necessary and sufficient conditions for
two potents with the same level of potency to be isomorphic, generalizing
the classical result of idempotents. We then study the commutative closure
of potent elements. We analyze the potent elements in matrix rings over
fields. In the case of finite fields we connect the potent matrices with the
exponent of polynomials.

All the rings considered in this paper are assumed to have an identity
except in some explicitly mentioned cases. Ring homomorphisms respect
the identity. If R is a ring, we denote U(R), Per(R), Pot(R), and Nil(R)
the set of units, periodic, potent, and nilpotent elements of R. In addition,
J(R) stands for the Jacobson radical of R. The symbol N (respectively, N*)
denotes the nonnegative integers (respectively, positive integers).

2. PERIODIC ELEMENTS

In this section, we study periodic elements of general rings. We are par-
ticularly interested in the case of graded rings.

Definitions 2.1. An element a of a ring R is periodic if there exist integers
0 < m <l such that a™ = a'. When m = 1, we say that the element is
potent. In this case, the smallest | > 1 such that a' = a is called the level
of potency. A ring R is periodic (m-potent) if all its elements are periodic

(potent).

If R is a periodic ring, then the element 1z + 15 is periodic and this easily
leads to the fact that there exists ¢ € N* such that ¢R = 0. For completeness,
we provide short proofs of a few well-known useful facts. Notice that we focus
on elements and don’t require the ring to be periodic.

Lemma 2.2. Let R be a ring, a,b € R, f(x) € Z[z] be a monic polynomial

of degree n, and q € N*. Then the following statements hold:
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(1) If f(a) = ga =0, then a is periodic.
(2) If a,b are periodic, qa = gb = 0, and ba = f(a)b, then the subring
(without one) generated by a and b is periodic.

Proof. (1) We may assume that the constant term of f(z) is zero. It is easy
to check that the elements of the set {a,a? a?,...,d!,...} are of the form
Z?:_Dl a;a’ with, for 1 <i<n—1, —¢g+1 < o; < ¢ — 1. Since there are
only a finite number of such expressions we conclude that the set of powers
of a is finite, and hence we can find distinct m,n € N such that ™ = a™, as
desired.

(2) Suppose that there exist distinct I,m € N (I > m) and distinct s,¢ €
N (s > t) such that a' = a™ and b* = b’. Since by the hypothesis ba = f(a)b,
this implies that the monomials in a and b are of the form a’’ with 0 < i < [
and 0 < j < s. Since there exists an integer ¢ > 0 such that qa = gb = 0, we
obtain that the subring (without identity) generated by a and b is a finite
ring, and hence is periodic. O

Let us mention a classical result due to Chacron (cf. [4]) that strengthens
(1) in Lemma 2.2.

Proposition 2.3. Let R be a ring such that for any element a € R, there
exist m € N and a polynomial f(z) € Z[x] such that a™ = a™*' f(a). Then
R is pertodic.

Proposition 2.4. Let a be an element in a ring R. Then the following are
equivalent:

(1) There exist m,l € N, | > m, such that a™ = d', i.e., a is periodic.

(2) There exist m,l € N, I > m, such that for any k € N and any j > m
we have a/ = aITFI=m),

(3) If at = a™ with | > m, then "™ is an idempotent.

(4) There ezists r € N* such that A" R ® a(l —a")R = aR.

(5) There ezists r € N* such that Ra” @ Ra(l —a") = Ra.

(6) There exists r € N* such that a" RN a(l —a")R = {0}.

(7) There ezists r € N* such that Ra" N Ra(l —a”) = {0}.

Proof. (1) = (2) We have a™ = a™a!™" = ama?=™) = ... = gmHhkl-m)
and hence also o/ = o/ T+0=™) for any j > m.
(2) = (3) Using (2), we get (a(=m))2 = gmi=m)+mll=m) — gm(i-m)

(3) = (1) This is straightforward.
(3) = (4) Suppose that there exists > 1 such that a” is an idempotent.
This implies that a"RNa(l —a")R Ca"RN (1 —a")R = {0}, and clearly
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a"R+a(l —a")R C aR. Now, if ab € aR, then we can deduce that
ab=(a" 4+ (1 —a"))ab = (a"" +a(l —a"))b € a"R+a(l —a")R.

(4) = (6) This is straightforward.

(6) = (3) Dueto a” —a? = a"(1—a") € a"RNa(l —a")R = {0}, we thus
get a” is an idempotent.

(3) = () and (5) = (7) and (7) = (3) are proved similarly. O

Although the fact that periodic elements are strongly clean seems to be
part of folklore, we present a short proof of this fact in Proposition 2.5 (4).
Notice also that the first three statements of this proposition are equivalent
if the ring R is periodic (cf. Corollary 2.6).

Proposition 2.5. For an element a € R, consider the following assertions:

(1) a is periodic and a' = a™ for some I, m € N* with m < .

L+k(l=m) 45 potent

(2) For any k € N, we have a = p + n, where p = a
and n = a(1 — aF=™) € Nil(R) are such that pn = np.

(3) There exists a prime integer p such that a — aP is nilpotent.

(4) a is strongly clean, i.e., a = e+u, where e = € and u is a unit, and

ecu = ue.

Then we have (1) = (2), (2) = (3), (2) = (4). Moreover, if we suppose
that there exists ¢ € N such that qa = 0, then the first three assertions are

equivalent.

Proof. (1) = (2) For any k € N, we have a = p+n, where n = a(1—a*(=™))
and p = o' T*(=™)  Thanks to (2) in Lemma 2.4, we have n™ = 0. Moreover,
if k is such that k(I —m) 4+ 1 > m, then one obtains

Ltk(l=m) _ o (1+k(=m))? _ +k(l—m)+(1+k(—m))k(—m) _ ,1+k(1—m)

p =D

The fact that pn = np is straightforward.
(2) = (3) By (2) in Lemma 2.4 and the proof of (1) = (2), we know that,

L+k(I=m) ig nilpotent. Since 1 and [ — m are

for any &k > m, we get a — a
coprime, the Dirichlet’s result yields the proof.

(2) = (4) By (2), we know that a = p + n, where p is potent and n is
nilpotent, pn = np, and pa = ap. We will show that p is strongly clean.
Suppose p! = p. We then obtain 1 — p!~! is idempotent and we easily check
that, for i > 1, we have (=14 p+p'~1)p’ = p™*!1. This leads to the fact that
(=1+p+p (=14 p"=2+p'~1) = 1. We can thus write p = e + u, where

-1

e =1—p'~!is an idempotent element and u = —1 4 p+ p!~! is an invertible

element. Notice that pu = up. Now, our periodic element a can be written
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asa=p+n=e+ut+n=e+u(l —|—u_1n). Since un = nu, we deduce that
1 4+ u~!n is invertible. This yields the proof.

To prove that the first three assertions are equivalent if there exists some
q € N* such that gqa = 0, it is enough to show that under this hypothesis
(3) = (1). But remember that a — a? € Nil(R), we get a monic polynomial
f(z) € Z]z] such that f(a) = 0. Due to ga = 0, Lemma 2.2 (1), yields the
conclusion. O

The comments just after definition 2.1 and the above proposition imme-
diately leads to the following classical result.

Corollary 2.6. If R is a periodic ring, then, for any element a € R, the
first three statements in Proposition 2.5 are equivalent.

Remarks 2.7. (1) From Proposition 2.5 we see that m-potent rings are
periodic and reduced.

(2) Proposition 2.5 (2) above shows that strongly nil clean rings are pe-
riodic.

Let us make some comments on periodic rings. First, let us recall that a
periodic ring is Dedekind-finite [3]. More information about these rings can
be found in [6]

Proposition 2.8. (1) If a domain A is periodic, then it is a subfield
of the algebraic closure of a finite field I, for some prime integer

p > 0.
(2) Let I be the nil ideal of a ring R. Then R is periodic if and only if
R/I is periodic. In particular, this is true for the prime radical of

R.

Proof. (1) Let R be a periodic domain. Then the nonzero elements of R are
potent and invertible. This gives that R is a commutative field. Moreover,
we know that a periodic ring has a nonzero characteristic. Since R is a
field, the characteristic is a prime positive integer, say p > 0. Moreover, R
is algebraic over its prime field, and hence R is a subfield of the algebraic
closure of [F),.

(2) This is an immediate consequence of the fact that, if for every a € R,
there exist m,l,n € N such that (™ — a!)” = 0; then the ring R is periodic
by using Proposition 2.3. (]

We remark that while considering potent rings, (2) implies that we can

assume the ring R to be semiprime.
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Definition 2.9. A ring R is an N-graded ring if R = @,y Ri, where R;
are additive subgroups of (R,+) and, fori,j € N, RiR; C R; ;.

We continue to focus on periodic elements. The next theorem was proved
in [3] when the base ring Ry was assumed to be periodic. The same proof
works for elements and we reproduce it here for the sake of completeness.

Theorem 2.10. Let R = @,y R; be a graded ring and let f =3 a; € R,
nm

a; € R; forie{0,...,m}, and f" = > A}, where A} is the homogeneous
=0

component of f™ of degree k. Then, if_ao 1s periodic and such that gag = 0
for some q € N, then for all kK € N, there exist I,s € N with | > s and
Al = Af. In particular, this holds if Rg is a periodic ring.

Proof. Let f = > " a; € R. Suppose that ag is periodic so that there
exist positive integers e,p with p < e and a§ = ab. Let k € N be fixed
and notice that A} is the sum of all words in ag, a1, ..., a,, of length n and
degree k. Any word in ag, a1, ..., a;, of length n and degree k is of the form
aélaclaézaCQ : --acyaéy“, with 0 < jy <eand >}_ ¢y = k. If n > k in any
such word the letter ag will appear. The number, say h, of such words is
finite and is independent of n > k when n is big enough. If wq, ..., wy are all
the words in ag, a1, ..., a,, of length n and degree k with n > k, then for all
n €N, A} = aqwy +- - -+ apwy, a; € N. The fact that the letter ag appears
in the words w1, ...,w, and our assumption shows that 0 < a; < ¢ — 1.
Therefore, for k fixed, the set {A} | n € N} is finite and hence, for all k € N,
there exist [, s € N, [ > s such that Al = A3, as desired. ([

The next theorem generalizes to periodic elements a result that is well-
known for idempotents of a polynomial ring. We first re-prove the case of
idempotent elements in a graded ring.

Lemma 2.11. Let R = @, Ri be a graded ring and e = Y7 je; € R be
an idempotent. If e;eq = ege;, for every i > 0, then e = eg. In particular, if
Ry is abelian, then E(R) = E(Ry).

Proof. Tt is clear that e is an idempotent of R. Assume that e # eg and
let £ > 0 be the least index such that e, # 0. Comparing the degree k
coefficients of e and e, we get 2eyeq = e;. Multiplying this equality by
ep on the right, we obtain ereg = eger = 0, and hence also e = 0. This
contradiction yields the result. O

The following theorem generalizes Lemma 2.11.
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Theorem 2.12. Let R = @, y Ri be a graded ring and p = 37" p; be a
periodic element such that [po,p;] = 0. If pt = p™, for some l > m, we
put v = m(l —m) and assume that rlg is a nonzero divisor in R. Then
pm2 = p8”‘2 € Ry. In particular, under these conditions, if p is potent, then
m=1 and p € Ry.

Proof. Let us assume that p = ;" | p;, with p; € R;, is such that pl=pm,
where [ > m. We put r := m(l — m); hence, Proposition 2.4(3) implies that
p" is idempotent. Now, Lemma 2.11 shows that p” € Ry, and hence p" = pg.
We also have

2

2 _ 2 2
pm _ (pm)m _ <pl)m _ plm _ pm +m(l—m) :pm pr _ pm pg.

We write p™ = ZE:O ¢i, ¢; € R;, and obtain

This gives that, for any 0 < ¢ < t, ¢; = pygi, and thus ¢; = p§¢; for any
s € N. Since p" = p{, the sum of degree 7 > 1 terms of p" is zero. We
now prove, by induction on ¢, that for any ¢ > 1, we have pg(r_l)pi =0. If
1 = 1, then the degree 1 term of p” gives rpgflpl = 0. The fact that r1p is
not a zero divisor gives pgflpl = 0. The induction hypothesis shows that
p(()i_l)(r_l) annihilates all the elements of pq,...,p;_1. The fact that the sum
of the degree i terms of p” is zero leads to rpg_lpi 4+ w = 0, where w is a
sum of words that contain at least one p; with j < i. Multiplying this last
equality by péi_l)(r_l) leads to rpf)(r_l)pi = 0. Our hypothesis says that rlg
is not a zero divisor leads to the claim.

We get pm2 = ZE:O ¢i, s0 ¢; € R; is a sum of products of p; for j < i.
Therefore, pgqi = 0. But we know that ¢; = pg’qi. This implies that, for
1 > 1, we have ¢; = 0. We thus conclude that me € Ry, as required. O

Remark 2.13. The proof of Theorem 2.12 shows that we only require the
graded ring R to be such that, for any a € S, where S is the set of monomials
in the p;’s, we have ra = m(l —m)a = 0 implies that a = 0.

The following result should be compared with (2) and (3) in Proposition
2.5.

Proposition 2.14. Let R = @,y Ri be a graded ring and p = Y 7" (p; €
Per(R) be such that p;po = pop; for 1 < i < n. Suppose there ezists a

natural number q such that qp; =0 for 0 < i <n. Then p — pg is nilpotent.
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Proof. On account of p and pg are periodic and commute and gp = gpy = 0,
we know, by Lemma 2.2(2), that p — pg is also periodic. This yields that
p—po = p1+p2+p3+ .-+ psis such that p — pg is periodic. So there
exist I,m € N such that (p — po)’ = (p — po)™ with [ > m. This gives that
(p—po)™(1 — (p—po)=™) = 0. If (p — po)'=™ = 0, then we are done. If
(p — po)™™ # 0, then 1 — (p — pg)'~™ is not a zero divisor, since its zero
component is 1. We thus deduce that (p — pg)™ = 0, as desired. [l

As a direct application of the last results, let us mention the following
corollary. We recall that if o is an automorphism of a ring Ry, then the skew
polynomial ring Ry[z; o] is the set of polynomials > ; a;2" with coefficients
a; € Ry written on the left. This set is a ring with usual addition and
multiplication based on the commutation rule za = o(a)z, for a € Ry. This
ring is graded by the degree.

Corollary 2.15. Let Ry be a ring and o an automorphism of Ry. If e(x) =
S eix' € R = Rylx;0] is an idempotent and p = p(z) = Y. piz* € R is a
periodic element, then
(1) If ejep = egey, then e(z) = eg € Ry.
(2) If p* = p™ is such that [p;,po] = 0 and m(l — m)1g is not a zero
divisor, then we have pm2 € Ryp.

Examples 2.16. (1) The polynomial p(z) = 4z +1 € (Z/8Z)|x] is such
that p(z)? = p(z). So, in this case we have [ = 3, m = 1, and r = 2.
This shows that the condition mentioned in Theorem 2.12 (or in
Remark 2.13(1)) is not satisfied.
(2) Consider the ring M3(k)[x], where k is a field. Let p(x) = po + p1z
be such that

010 0 0 O
po=10 0 1 and pr=11 0 O
1 00 0 -1 0

One can check that p(x)? = 1, and hence p(x) is potent but we
remark that pop; # p1po, so that we cannot apply Theorem 2.12.

Corollary 2.17. (1) Ifa =Y a; € R = @,y Ri is such that a' = a (a is
a potent element) with [ag,a;] = 0 and (I — 1)1k is not a zero divisor, then
a = agp.

(2) Let R be 2-primal and let T' be a set of central indeterminates. Then
S := R[T] is 2-primal and if a € Per(S) then a = ap+a; where ag € Per(R)
and ay; € Nil(R)[T|\ R. Thus, in this case, we have Per(R[T]) C Per(R)+
(NiI(R)[T] \ R).
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Proof. (1) is a direct consequence of our earlier results and is left to the
reader.

(2) To prove that S is 2-primal it is enough to show that Nil(S) C P(S),
where P(5) is the prime radical of S. It is well-known that P(S) = P(R)[T]
(cf. [13], P. 160). So that S/P(S) = sy = piay (L] Since R is 2-primal,
we get that R/P(R) is reduced and hence S/P(S) is also reduced. This
implies that S itself is 2-primal.

Let P be a minimal prime ideal of R. Then P is a completely prime ideal
of R, so R/P is a domain. If f € R[T], then f € R[Ty] where Ty = t1,...,t,
is a finite subset of 7. We thus write f =), ; a;t’, where I C N", a; € R,
and for i = (iy,...,i,) € I, t* = £ .. tin. For any f € Per(R[T]),
there exist distinct m,n € N such that f = f e R[T]/P[T] (m > n).
Comparing the degree zero coefficients of f™ and f™, we get ag is periodic.
Now, to end the proof, it is enough to show that for each minimal prime
ideal P of R, every a; € P (i # 0). Also, R[T]/P[T] = £[T]. Then
f € Per(£[T)). Since £[T] is a domain, we have f =0 or f = =1. If
f=0,then f € P[T]. If f* " =1, then f € E[T] is invertible. Since R/P
is a domain, this implies that @; = 0 for i # 0, and hence a; € P, i # 0. In
both cases, we get a; € P for i # 0. Because for every minimal primal ideal
P we get a; € P for i # 0, we obtain a; € (P = Nil(R) for i # 0. We
conclude that Per(R[T]) C Per(R) + (Nil(R)[T]\ R). O

Example 2.18. Let R be the commutative ring Z[y]/(y?). Consider 14+yz €
R[z]. Clearly, 1 is periodic and y is nilpotent, but (1 4+ yx)™ = 1 4+ nyz is
not periodic for any n € N. This shows the reverse inclusion in Corollary
2.17(2) does not always hold.

3. POTENT ELEMENTS

This section starts with some properties of potent elements in general
rings. We first connect these elements with the von Neumann elements. It
is well-known and obvious that idempotents are (von Neumann) unit regular.
Theorem 3.2 shows that the same is true for potent elements.

Lemma 3.1. A potent element is always von Neumann reqular. A mw-potent
ring is a commutative von Neumann regular ring. In particular, it is unit
reqular.

Proof. Let a = a! be a potent element of R. If | = 2, then a is an idempotent,

and hence unit regular. If | > 2, then we have a = a! = aa'2a so that a
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is regular. If R is a m-potent ring, then it is a commutative von Neumann
regular ring. Such a ring is always unit regular (cf. [7, Corollary 4.2]). O

Since a strongly regular element is unit regular ([7]), we conclude that a
potent element is unit regular. The next theorem gives a direct proof of this
fact and moreover shows that a quasi inverse of a potent element is a root
of unity.

Theorem 3.2. Every potent element is unit reqular and has a root of unity

as quasi inverse.

Proof. Let x € Pot(R), say ! = x with [ > 2. If | = 2, z is an idempotent
and the result is clear. So we may assume that [ > 3. We want to prove
that there exists y € U(R) such that z = zyz. We get z = zz!~2z and
z(1 —2!=1) = 0. This gives (1 — 2/ + 272)z = 2! = 2.
Since (1 — 2'"1)2!=2 = 0 and 1 — 2/~! is an idempotent, we get that
(1 — g1 4 xle)lfl =1—gl-1 4 (xlfQ)lfl -1
O

We now collect some features of a potent element in the following corol-
lary.

Corollary 3.3. Let o' = a € Pot(R) with | being the level of potency of a.
Weputu=—-14+a+d ', e=1-d"1, v=1+da"2-d"1. Then the
following statements hold:
(1) The element a'=1 is an idempotent, u € U(R), and a = e + u, with
eu = ue.
(2) The element a is unit reqular, more precisely, a = ava, where v €
U(R) is such that v'=" =1 and [ is the level of potency of v.
(3) Wehaveav=f=f2, f=d'=1-e,u=-1+a+d 1 =a—e,
and v =a"=? +a — u.

Proof. (1) This can be extracted from the proof of Proposition 2.5(4).
(2) The fact that a = ava, where v =1+ a'"2 —a/"! = a"2 + e € U(R)
comes from the proof of Theorem 3.2. This proof also shows that v!~1 =1,

! = v. Let us now show that the level of potency of v is I.

and hence v
Assume that v®* = v, with 1 < s < [. Following the proof of Theorem 3.2,
wegetv=0°= (1+a2—d )y =1+ad*1-dt=v=1+a"2-0a"L
This leads to a'=*~! = a'"2. So, a = a! = a'~*T!. Since 1 <l —s+1 <,
this contradicts the fact that [ is the level of potency of a. This shows that
[ is also the level of potency of v.

(3) This is straightforward and left to the reader. O
10
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Remark 3.4. If ¢ € R is periodic, say @' = o™ with [ > m, we put
r = m(l —m). Following the proof of Proposition 2.5 we can express the
summands of these decompositions in terms of a. In fact, we have a =

r+l m+1 is nilpotent, and

p+n =e+u, where p = a is potent, n = a — a
e=1—p" u=—14+p+p". In addition, the proof of Theorem 3.2 gives
that p = pup, where v = 1 +a"~! —a" is invertible (with inverse v"~!). The

element f = po is then idempotent and we get f2 = f = a”.

Lemma 3.5. Let a,b be elements in a ring R. Then, the following state-
ments hold:

(1) If ab € Pot(R), then (ba)® € Pot(R) for any s > 2.
(2) If ab € Pot(R) and ab € U(R), then ba € Pot(R).

Proof. (1) Let (ab)! = ab. Then direct computations give that

(ba)® = b(ab) =V "1g = b((ab)))* " (ab) " a = blab)* ! (ab) ™!
(ab)s+l 20 = b(ab)*2(ab)'a = b(ab)* %(ab)a

b
b

This shows that (ba)® is a potent element, as required.
(2) If (ab)! = ab and ab € U(R), then (ab)'~! = 1, this gives that (ba)! =
b(ab)'~'a = ba. So that ba is potent. O

The next proposition gives more information about the relations between
ab and (ba)? when ab is potent. Let us notice that if ab € Pot(R), then by
Proposition 3.5 (1), we have (ba)? € Pot(R) and these elements are strongly
clean. We can thus write ab = e + u and (ba)? = f + v, where e, f are
idempotents and u, v are units such that eu = ue and fv =vf.

Proposition 3.6. With the above notations we have the following:

(1) afb=0.
2) baf = bea.

(2)
(3) blaf —ea) = (af —ea)b=0.
(4) b(u+e)a= f+v and a(f + v)b = avb.

Proof. (1) According to Corollary 3.3 we have f =1 — (ba)?(!~1, and hence

afb=a(l - (ba)*"")b = ab — (ab)* "D+
= ab— (ab)!(ab)"! = ab(1 — (ab)'™1) = 0.

11



(2) We have the following equalities
baf = ba(l — (ba)*"=V) = ba — b(ab)*Va = ba — b(ab)'ta
= ba — (ba)! = b(1 — (ab)'"1)a = bea.

(3) The first equality is clear from (2), and the second one is a direct
consequence of the fact that e = 1 — (ab)=1.
(4) Note that f 4+ v = (ba)? = b(ab)a = b(e + u)a. Also, Corollary 3.3
implies that v = —1+4 (ba)?+ (ba )
avb = a(=1 + (ba)? + (ba)>""V)b = —ab + (ab)® + (ab)?—1+1

= (ab)3 = a(ba)2b =a(f +v)b.

I=1) | This leads to the following equalities

This finishes the proof. ([

It is worth considering the relationship between periodic and regular el-
ements. We say an element a € R is strongly regular if there exists x € R
such that a = axa, where ax = xa. We denote the set of strongly regular
elements as sReg(R). Theorem 3.2 and its proof show that potent elements
are strongly regular. We have the following proposition.

Proposition 3.7. Let R be any ring. We have:
Per(R) N sReg(R) = Pot(R).

Proof. 1t is enough to show that Per(R) N sReg(R) C Pot(R). To do this,
let a € Per(R)NsReg(R). There exist I,m € N and x € R such that [ > m,
a = a®z, ax = za, and a' = ™. We suppose that [ is minimal. Assume

that a ¢ Pot(R). We thus have m > 2. This gives rise to

a7l =da =amr =a™ %% = a™ L.

This is a contradiction with the minimality of I. ([

Example 3.8. Proposition 3.7 is untrue if we just consider the intersection
of Per(R) with Reg(R), the set of regular elements. To see this, consider
the ring R = M>s(F3). This finite ring is periodic and regular but not all
elements of R are potent.

The following proposition generalizes the classical criterion for isomorphic
idempotents (cf. [14], section 21).

Proposition 3.9. Suppose ¢,d € R and n > 2 are such that ¢ = ¢ and
d* =d. Then

cR=~dR < Ja,be R such that ¢ = bd" 2a and d = ac™2b.
12



Proof. Suppose that 0 : cR — dR is an R-module isomorphism and let
a = da € dR be such that §(c) = a. We thus have a = 6(c) = 0(c") =
O(c)c"~! = ac”!. By a similar argument, if b = ¢3 € cR is such that
6=1(d) = b, we obtain b = 0~(d)d"~! = bd"~!. We then get

c=0"10(c)) =07 (a) = 07 (d)a = bd" o = bd"?a.

We can deduce d = ac” ?b in the same way.
Conversely, suppose ¢ = ¢ € R and d"” = d € R are such that ¢ = bd" %a
and d = ac”2b. We thus have the following

ac” ! =ac" %c = ac" %bd" %0 = dd"%a = d"'a € dR.

Similarly, we obtain bd"~! = ¢""1b € cR. We then define 0 : cR — dR
via 0(c) = ac® ! and ¢ : dR — cR via §'(d) = bd"~!. These maps are
well-defined and we compute, for every x € R,

0'(0(cz)) = 0'(ac"tz) = 0/ (d" taz) = 0'(d)d" 2ax
= bd" 1d"2ax = bd" *ax = cx.

Similarly, we have 6(6'(dx)) = dx for every x € R. This shows that 6 is an
isomorphism of right R-modules with 6/ = 671, U

The symmetry of Proposition 3.9 gives immediately the following corol-
lary.

Corollary 3.10. Suppose ¢,d € R and n > 2 are such that ¢ = ¢ and
d" =d. Then cR ~ dR if and only if Rc ~ Rd.

Remark 3.11. Let us mention that, for a potent element ¢ € R, say ¢" = ¢,
for n > 1, we have that cR = ¢® 'R where ¢"! is an idempotent. Hence,
if d € R is another potent element such that d* = d then cR ~ dR if
and only if ¢" 'R ~ d" 'R. So we could also use the characterization of
the isomorphic idempotents ¢”~! and d”~! to get a characterization of the
isomorphic potent elements ¢ and d, but this would have involved powers of
c and d.

Let us mention, without proof, the following lemma. For more information

on direct limit we refer the reader to [18].

Lemma 3.12. Let Ry, Ry and R; i € I be rings. Then the following state-
ments hold:
(1) POt(Rl X Rz) = POt(Rl) X POt(Rg).
(2) If (I,<) is a directed set and (R;)icr is a directed system of rings,
then Pot(R;) is a directed system of sets and limPot(R;) = Pot(imR;).
13



It is easy to remark that Pot(R) N Nil(R) = {0}. We will provide some
more remarks related to Pot(R) in the next theorem. To do this, we need
the following definition (cf. [1]).

Definitions 3.13. A subset S of a ring is called commutatively closed if for
any a,b € R, we have ab € S implies ba € S. If a,b € R, we write a o b if
there exists c,d € R such that a = c¢d and b = dc, and we define by induction
an~ b iff there exists ¢ € R such that a Y and ¢ o~ b. If S is a subset of

R, we define
S={zeR|IneN, Ise S withz~ s}.

This definition is motivated by the fact that it leads to a characterization
of Dedekind-finite rings, reversible rings, and is related to regular elements,
clean elements, Jacobson Lemma, and many other classical topics (cf. [1]
and [15], for more information).

Theorem 3.14. Let R be a ring. Then the following statements hold:

(1) Per(R) is commutatively closed (i.e., ab € Per(R) if and only if
ba € Per(R)).

(2) Pot(R) C Per(R).

(3) If = € Pot(R), then there exists | € N such that z' € Pot(R).

(4) Pot(R) N Nil(R) = {0}

(5) Pot(R) N Jac(R) C {0}

Proof. (1) This is straightforward and left to the reader.

(2) Due to Pot(R) C Per(R), we get Pot(R) C Per(R) = Per(R).

(3) If z € Pot(R), then z is periodic, and so a power of z is idempotent
by Proposition 2.4.

(4) If z € Pot(R) N Nil(R), then there exist n € N and y € Pot(R) such
that x ~y and, since € Nil(R), y € Nil(R), as well. This means that y is

potent and nilpotent, so that y = 0 and the fact that z ~ y implies x € {T}
n

Conversely, let a € {0}. Thanks to {0} C Nil(R), we obtain a € Nil(R).
On the other hand, since 0 € Pot(R), we have 0 C Pot(R), and therefore
a € Nil(R) N Pot(R), as desired.

(5) If x € Pot(R) N Jac(R), we have that there exists r € N such that
2" is an idempotent and belongs to J(R). This implies that 2" = 0 and
hence the statement (4) above shows that = € Pot(R) N Nil(R) = {0}, as

required. O
14




Let us notice that the commutative closure gives rise to a topology on
a ring. In particular, the intersection of two closed subsets is closed. This
immediately gives the inclusion {0} C Nil(R) N Pot(R) in Theorem 3.14(4).

Recall that a ring is reversible if for a,b € R, ab = 0 implies ba = 0.

Corollary 3.15. A ring R is reversible if and only if Pot(R)NNil(R) = {0}.

Proof. The definitions imply that R is reversible if and only if {0} = {0}.
Theorem 3.14(4) yields the conclusion. O

Example 3.16. We give an example such that the set of potent elements
is not commutatively closed. Let F be a field and

o= (8 1) € My(F) and b= ((1) 8) € My(F).

Then ab = 0 is potent but 0 # ba is nilpotent, and hence not potent.
Before stating the next proposition let us make the following remark.

Remark 3.17. A word of caution about definitions is in order. A ring R is
said to be potent if each left ideal of R that is not contained in the Jacob-
son radical contains a nonzero idempotent and idempotents lift modulo the
Jacobson radical. This definition is left-right symmetric and was introduced
by Nicholson [16]. In some literature (cf., e.g. [17]) the m-potent rings are
called potent rings. We will continue to use the classical definition of potent
rings given by Nicholson. Nicholson proved that every exchange ring is a
potent ring (cf. [16]). We have the following result relating w-potent rings
and potent rings.

Proposition 3.18. A w-potent ring is a potent ring.

Proof. If R is a m-potent ring, then according to [17] every nonzero subring
of R not contained in the Jacobson radical contains an idempotent element.
Since a left ideal of R is a subring, the definition of a potent ring immediately
gives that R is potent. The Jacobson radical of a potent ring being zero we
thus get the result. (I

Proposition 3.19. If the zero divisors of a ring are nilpotent, then the
potent elements are roots of unity. This is the case of right Artinian local
Tings.

Proof. If R is a ring satisfying our hypothesis and a € R is a nonzero potent
element, say a' = a, for I € N, [ > 1, we can deduce that a(1 — a'~!) = 0.

Our hypothesis then shows that either a is nilpotent or 1 — a!~* = 0. On
15



account of a is potent and nonzero, it cannot be nilpotent. This finishes the
proof. O

The ring Z/p"Z, where p is a prime number, is a concrete example for
Proposition 3.19.

We recall that a module My over a ring R is said to be a Fitting module
if for every a € Endr(M) there exists s € N such that

M = Ker(a®) @& Im(a®)

We now study potent elements in the endomorphism ring of a Fitting mod-
ule. As a corollary this will give a concrete decomposition of matrices over
division rings.

Theorem 3.20. Let Mp be a Fitting module, o« € Endr(M) and s € N be
such that M = Ker(a®)®Im(a®). Then « is potent if and only if o! |y, = id.
and oy, =0, where My = Ker(a®) and My = Im(a®).

Proof. Suppose that a™ = «, for some m € N. We decompose a = ag + a1
where ag, 1 € Endr(M) are such that aoly, = a|m,, @olym, = 0 and
ar|yv, = almy,a1lm, = 0. My and M are stable under the action of a.
Moreover o = 0, apar; = ajag = 0 and «aq is an injection on M;. Moreover
we have @ = o™ = (ag+ a1)™ = o' + of' = o = a9 + o1 and hence
ap' = ap and af' = a1. Since g is nilpotent we get ap = 0 and a = oy
with of" = a; and the fact o is an injection on M yields the result with
l=m-—1.

For the converse notice that, with the above notation, o = a7 and hence
ot =a. O

In the rest of this section, we will briefly study potent matrices. Recall
that if a matrix with coefficients in a division ring D is idempotent, then
there exists a matrix P € G L, (D) such that PAP~! = diag(1,...,1,0,...,0).
As a corollary of Theorem 3.20, we obtain the following generalization of this
fact for potent matrices.

Corollary 3.21. Suppose that D is a division ring and A € R = M, (D)
is such that A = A. Then there exists P € GL,(D) such that PAP™' =
diag(Ay,0), where AT =1, Ay € GL,.(D), and r = rank(A).

Proof. Since D7, is a Fitting module, we apply Theorem 3.20 and obtain
that there exists P € GL,(D) such that PAP™! = diag(A1, Ap), where
Ay € GL,(D) and Ag is nilpotent. The fact that A' = A implies that
Al1 = A; and Ag = Ap. Since A is potent and nilpotent, we obtain that

Ay =0. g
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An invertible element a € R is potent if and only if a is a root of unity.
In the next propositions we focus on noninvertible potent matrices.

Corollary 3.22. Let A € My(D) be a noninvertible matriz over a commu-
tative integral domain D. Then A is potent if and only if det(A) = 0 and
tr(A) is a root of unity in D.

Proof. Let F be the quotient field of D and consider A € My(D) C My(F).

Theorem 3.21 shows that A is similar to a matrix . Moreover the

ai

0 0
element a; is a root of unity and we have that Tr(A) = a;. This shows that
the condition is necessary. The converse is left to the reader. O

An easy example of a potent matrix is a diagonal matrix with potent
elements on the diagonal. We now give another more subtle construction of
potent matrices.

Example 3.23. (1) Let R be a ring. To construct A € M, (R) such that
Al = A, we consider [ row vectors {ui,uz,...,u} € Mix,(R) and [ column
vectors {U1,7g,...,01} € Myx1(R) such that, there exists k € N with, for
every 1 <i,j <1, the products u;5; = 0 if i # j and (u;7;)* =1 € R. Then
the matrices

w ur

A:(vﬁ,...,zﬁ) | € Mpxn(R) and B= | (ﬁ,...,W)EMle(R),

Uy ug

are such that B¥ = I;,; and A**1 = A. Let us give particular concrete
instances of this construction. Let R be the set of real numbers, and suppose
ui,...,u form a part of an orthogonal basis of R". Taking v; = u;' (the
transpose of u;), one obtains u;U; = ¢;;, and hence A2 = A€ Muxn(R). As
a very special case if x,y, z,t € R are such that (zy + zt)¥ = 1, for some

k € N, then the matrix A = (i) (J: z) € Msyo(R) is such that A1 = A,

The notion of exponent of polynomials with coefficients in a finite field is
classical. The following lemma is a well-known result.

Lemma 3.24. Let p(X) € F,[X] be such that p(0) # 0, then there exists
e € N such that p(X) divides X¢ — 1.

Proof. Since the element X of the finite ring F,[X]/p(X) is not a zero divisor,

it must be a potent element. This finishes the proof. O
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With the notations of the above lemma, the minimal e such that p(X)
divides X¢ — 1 is called the exponent or the period of p(X) and will be
denoted by Ezp(p(X)). There are generalizations of this result, in particular
for polynomials over periodic rings, we refer to [3] for more details. Let us
recall that if p(X) € Fy[X] is such that p(X) divides X' —1, then Ezp(p(X))
divides 1.

We remark that if p(X) € F,[X] has a nonzero independent coefficient,
then any matrix (of any size) annihilating this polynomial will be invertible
and potent. Now, in the next lemma, we look at noninvertible matrices in
My (Fy).

Lemma 3.25. Let A € M,(F,) be a noninvertible matriz such that A' = A™
with m minimal. Then m is the highest power of X dividing the minimal
polynomial pa(X) of A.

Proof. Since A is not invertible, its minimal polynomial is of the form
na(X) = p(X)X*, where p(0) # 0 and s > 1. It follows from Lemma
3.24 that there exists e € N such that p(X) divides X¢ — 1. Hence, pu4(X)
divides (X¢ — 1)X*®, and therefore A°"* — A5 = 0. The minimality of m
shows that m < s. On the other hand, since A' — A™ = 0, we can deduce
that the polynomial pa(X) = p(X)X® divides (X'™™ — 1)X™, and thus
s < 'm. This concludes the proof. ([

We close this paper with the following proposition.

Proposition 3.26. Let 0 # A € M, (F,) be a noninvertible matriz. Then
AL = A™ for some | € N with | > m if and only if X™ is the highest power
of X dividing p1a(X) and Exp(*4 ualX )) divides | —

Proof. Assume that Al Am Then pa(X)| X! — X™ and %\X“m — 1.
This gives that Exp(*457- )\l

Conversely, if X™ is the hlghest power of X dividing pa(X), then we
can deduce that Eap(*4r? aX )) exists and, by our hypothesis, it follows that

Exp(He7 )|l m. This gives #45- |Xl ™ — 1, and hence p4(X)| X! — X™.
Consequently, Al — A™ =0, as des1red. O
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